

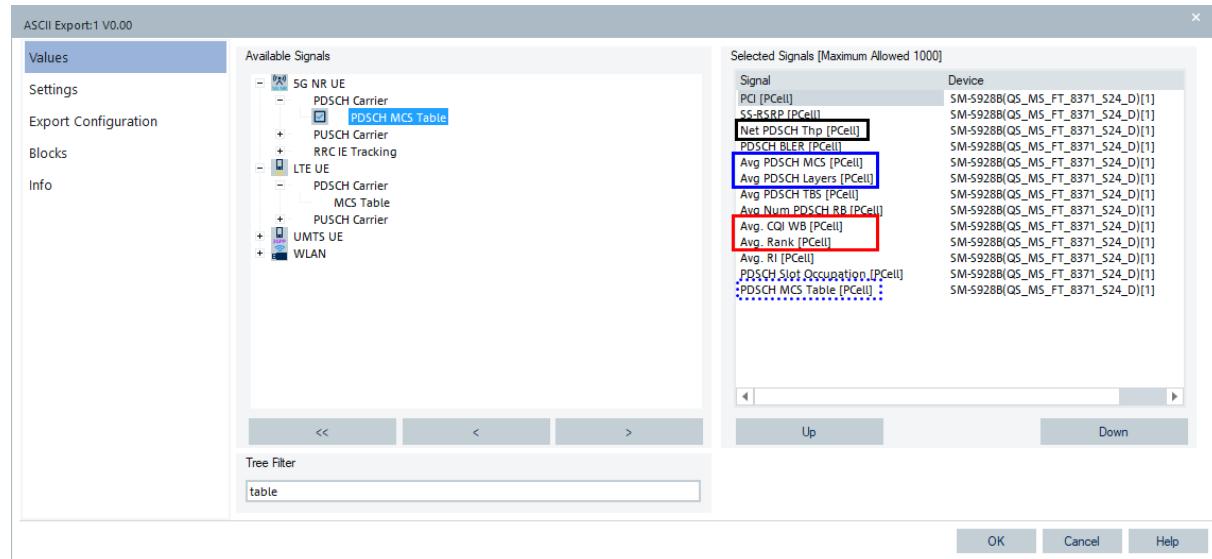
5G DL Spectral Efficiency

Spectral Efficiency (SE) is the user downlink throughput per unit of used radio bandwidth, expressed in bits/s/Hz.

With ROMES Export Measurement Files (s), it is possible to export data to calculate the theoretical Spectral Efficiency using:

1. MCS/Layer (gNB perspective)
2. CQI/RI (UE perspective)

Picture 1 illustrates the ROMES Exporting Measurement Files.


The export result is saved under .asc which is required to be converted with "Text to Columns" in Excel.

The example of exported values is shown below. It is important to include parameters under "5G NR UE" for PCell (i.e. in EN-DC mode, SCG-PSCell) :

- Net PDSCH Thp
- Avg. PDSCH MCS

- Avg. PDSCH Layers
- Avg. CQI WB
- Avg. Rank

Other parameters e.g. PCI, SS-RSRP, PDSCH BLER and so on would be optional for individual interests or other purpose of evaluations.

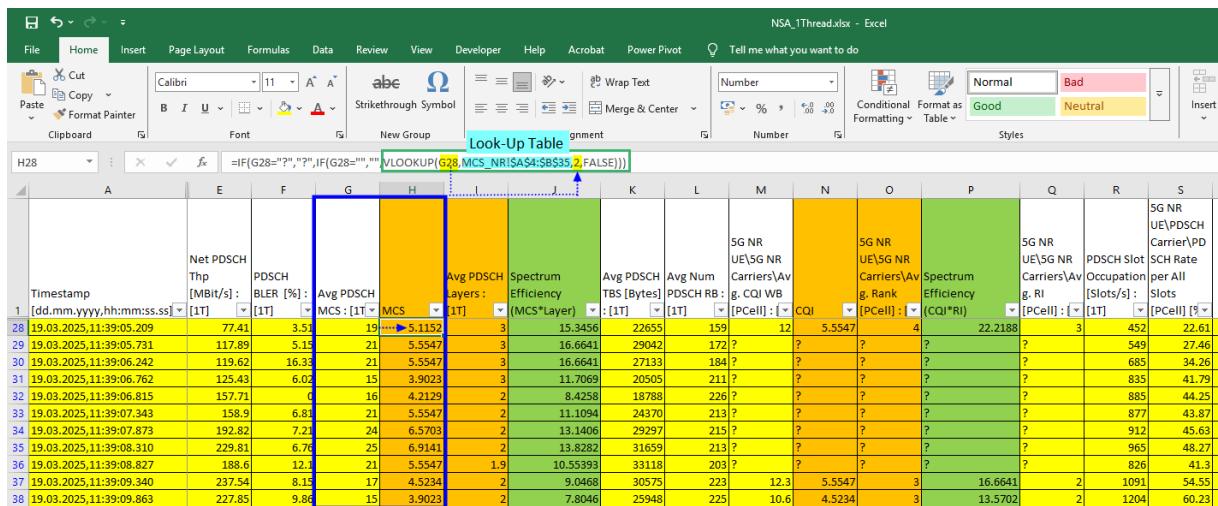
Remark:

Although ROMES supports exporting the "5G NR UE/ PDSCH MCS Table", the values should be treated with caution. The logfile measured with ROMES older than version 25.3 [Build 4759- Dated: Sep 30 2025], numerous entries contain "?", denoting that the corresponding information was not available.

Once the data is successfully converted, there are 2 tasks need to be processed before the spectral efficiency can be calculated.

1. VLOOKUP Table for MCS Values
2. VLOOKUP Table for CQI Values

VLOOKUP Table for MCS

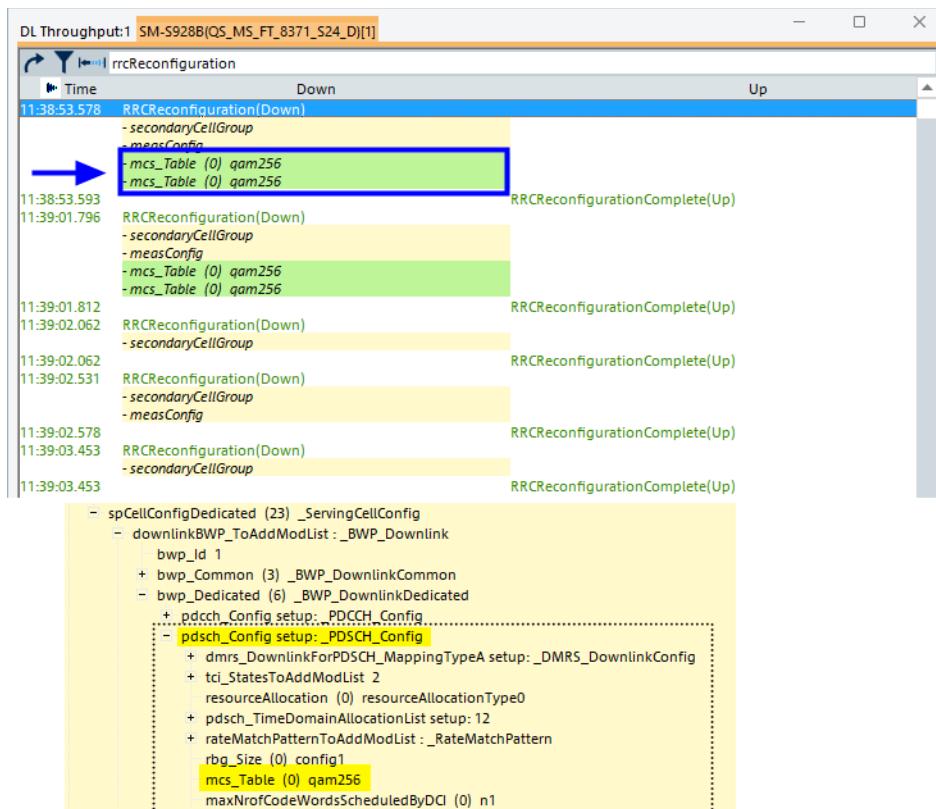

The exported PDSCH MCS data (Column G) must be converted to the corresponding Spectral Efficiency using Excel VLOOKUP function. See example in Picture 3.

The Avg PDSCH MCS in Column G, example G28, MCS = 19 --> its Spectral Efficiency = 5.1152 when the MCS Table is 256QAM.

Note:

The below example logfile was measured using ROMES Version 24.02 which does not contains the PDSCH MCS Table value in the exported file, hence, it is required an extra look-up into the ROMES L3 View.

NSA_1Thread.xlsx - Excel


How to find out what is the configured 5G MCS table ?

In 5G NR, the L3 message "RRC Reconfiguration" contains parameter "mcs-Table" in PDSCH-Config.

The "mcs-Table" tells UE which MCS table to be used.

In DL (PDSCH), there are 3 MCS table:

- table 1 (64QAM)
- table 2 (256QAM)
- table 3 (64QAM with Low Spectral Efficiency)

RRC Reconfiguration message shows that the PDSCH is configured with 256QAM table.

Hence, the VLOOKUP table must provide Column A for MCS Index and Column B for Spectral Efficiency for 256QAM table.

A	B	C	MCS Table 1: 64QAM				H	MCS Table 2: 256QAM				M	MCS Table 3: 64QAM with Low SE				
			MCS Index	Modulation Order	Target code Rate	Spectral		MCS Index	Modulation Order	Target code Rate	Spectral		Index	Order	Rate		
2	Row 2 Spectral		3	I_{MCS}				4	I_{MCS}	Q_m			5	I_{MCS}	Q_m		
3	0	0.2344	4	0	2	120	0.2344	5	0	2	193	0.377	6	0	2	30	0.0586
4	1	0.3770	5	1	2	157	0.3066	6	1	2	308	0.6016	7	1	2	40	0.0781
5	2	0.6016	7	2	2	193	0.377	8	2	2	449	0.877	9	2	2	50	0.0977
6	3	0.8770	8	3	2	251	0.4902	9	3	2	602	1.1758	10	3	2	64	0.125
7	4	1.1758	9	4	2	308	0.6016	10	4	2	378	1.4766	11	4	2	78	0.1523
8	5	1.4766	10	5	2	379	0.7402	11	5	4	434	1.6953	12	5	2	99	0.1934
9	6	1.6953	11	6	2	449	0.877	12	6	4	490	1.9141	13	6	2	120	0.2344
10	7	1.9141	12	7	2	526	1.0273	13	7	4	553	2.1602	14	7	2	157	0.3066
11	8	2.1602	13	8	2	602	1.1758	14	8	4	616	2.4063	15	8	2	193	0.3770
12	9	2.4063	14	9	2	679	1.3262	15	9	4	658	2.5703	16	9	2	251	0.4902
13	10	2.5703	15	10	4	340	1.3281	16	10	4	666	2.7305	17	10	2	308	0.6016
14	11	2.7305	16	11	4	378	1.4766	17	11	6	517	3.0293	18	11	2	379	0.7402
15	12	3.0293	17	12	4	434	1.6953	18	12	6	567	3.3223	19	12	2	449	0.8770
16	13	3.3223	18	13	4	490	1.9141	19	13	6	616	3.6094	20	13	2	526	1.0273
17	14	3.6094	19	14	4	553	2.1602	20	14	6	666	3.9023	21	14	2	602	1.1758
18	15	3.9023	20	15	4	616	2.4063	21	15	6	719	4.2129	22	15	4	340	1.3281
19	16	4.2129	21	16	4	658	2.5703	22	16	6	772	4.5234	23	16	4	378	1.4766
20	17	4.5234	22	17	6	438	2.5664	23	17	6	822	4.8164	24	17	4	434	1.6953
21	18	4.8164	23	18	6	466	2.7305	24	18	6	873	5.1152	25	18	4	490	1.9141
22	19	5.1152	24	19	6	517	3.0293	25	19	6	682.5	5.332	26	19	4	553	2.1602
23	20	5.3320	25	20	6	567	3.3223	26	20	8	711	5.5547	27	20	4	616	2.4063
24	21	5.5547	26	21	6	616	3.6094	27	21	8	754	5.8906	28	21	6	438	2.5664
25	22	5.8906	27	22	6	666	3.9023	28	22	8	797	6.2266	29	22	6	466	2.7305
26	23	6.2266	28	23	6	719	4.2129	29	23	8	841	6.5703	30	23	6	517	3.0293
27	24	6.5703	29	24	6	772	4.5234	30	24	8	885	6.9141	31	24	6	567	3.3223
28	25	6.9141	30	25	6	822	4.8164	31	25	8	916.5	7.1602	32	25	6	616	3.6094
29	26	7.1602	31	26	6	873	5.1152	32	26	8	948	7.4063	33	26	6	666	3.9023
30	27	7.4063	32	27	6	910	5.332	33	27	8	reserved		34	27	6	719	4.2129
31	28		33	28	6	948	5.5547	34	28	2	reserved		35	28	6	772	4.5234
32	29		34	29	2	reserved		35	29	4	reserved		36	29	2	reserved	
33	30		35	30	4	reserved		36	30	6	reserved		37	30	4	reserved	
34	31		36	31	6	reserved		37	31	8	reserved		38	31	6	reserved	

VLOOKUP Table for CQI

The exported Avg. CQI WB data (Column M) must be also converted to the corresponding Spectral Efficiency using Excel VLOOKUP function. See example in the picture below.

The Avg. CQI WB in Column M, example M28, Wideband CQI = --> its Spectral Efficiency = 5.5547 when the MCS Table is 256QAM.

Look-Up Table																
N28	=IF(M28="?",VLOOKUP(M28,COI_NR!\$A\$3:\$B\$18,2,TRUE))															
A	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	
Timestamp	Net PDSCH															5G NR
	Thp [Mbps]	PDSCH														UE/5G NR
1	[dd.mm.yyyy, hh:mm:ss,000]	[1T]	BLER [%]	Avg PDSCH		Avg PDSCH										Carrier/Av
28	19.03.2025,11:39:05.209	77.41	3.51	19	5.1152	3	15.3456	22655	159	12	5.5547	4	22.2188	3	452	
29	19.03.2025,11:39:05.731	117.89	5.15	21	5.5547	3	16.6641	29042	172	?	?	?	?	?	?	549
30	19.03.2025,11:39:06.242	119.62	16.33	21	5.5547	3	16.6641	27133	184	?	?	?	?	?	?	685
31	19.03.2025,11:39:06.762	125.43	6.02	15	3.9023	3	11.7069	20505	211	?	?	?	?	?	?	835
32	19.03.2025,11:39:06.815	157.71	0	16	4.2129	2	8.4258	18788	226	?	?	?	?	?	?	885
33	19.03.2025,11:39:07.343	158.9	6.81	21	5.5547	2	11.1094	24370	213	?	?	?	?	?	?	877
34	19.03.2025,11:39:07.873	192.82	7.21	24	6.5703	2	13.1406	29297	215	?	?	?	?	?	?	912
35	19.03.2025,11:39:08.310	229.81	6.76	25	6.9141	2	13.8282	21659	232	?	?	?	?	?	?	965
36	19.03.2025,11:39:08.827	188.6	12.1	21	5.5547	1.9	10.55393	33118	203	?	?	?	?	?	?	826
37	19.03.2025,11:39:09.340	237.54	8.15	17	4.5234	2	9.0468	30575	223	12.3	5.5547	3	16.6641	2	1091	54.55
38	19.03.2025,11:39:09.863	227.85	9.86	15	3.9023	2	7.8046	25948	225	10.6	4.5234	3	13.5702	2	1204	60.23
A	B	C	D	E	F	G	H	I	J	K	L	M	N			
				(MCS Table 1 for PDSCH: 64QAM)			(MCS Table 2 for PDSCH: 256QAM)			(MCS Table 3 for PDSCH- 64QAM with Low SE)						
1	CQI index	Efficiency		CQI index	Modulation	code rate x 1024	Efficiency	Modulation	code rate x 1024	Efficiency	Modulation	code rate x 1024	Efficiency			
2	0	0.1523		0	out of range			out of range			out of range					
3	1	0.3770		1	QPSK	78	0.1523	QPSK	78	0.1523	QPSK	30	0.0586			
4	2	0.8770		2	QPSK	120	0.2344	QPSK	193	0.377	QPSK	50	0.0977			
5	3	1.4766		3	QPSK	193	0.377	QPSK	449	0.877	QPSK	78	0.1523			
6	4	1.9141		4	QPSK	308	0.6016	16QAM	378	1.4766	QPSK	120	0.2344			
7	5	2.4063		5	QPSK	449	0.877	16QAM	490	1.9141	QPSK	193	0.377			
8	6	2.7305		6	QPSK	602	1.1758	16QAM	616	2.4063	QPSK	308	0.6016			
9	7	3.3223		7	16QAM	378	1.4766	64QAM	466	2.7305	QPSK	449	0.877			
10	8	3.9023		8	16QAM	490	1.9141	64QAM	567	3.3223	QPSK	602	1.1758			
11	9	4.5234		9	16QAM	616	2.4063	64QAM	666	3.9023	16QAM	378	1.4766			
12	10	5.1152		10	64QAM	466	2.7305	64QAM	772	4.5234	16QAM	490	1.9141			
13	11	5.5547		11	64QAM	567	3.3223	64QAM	873	5.1152	16QAM	616	2.4063			
14	12	6.2266		12	64QAM	666	3.9023	256QAM	711	5.5547	64QAM	466	2.7305			
15	13	6.9141		13	64QAM	772	4.5234	256QAM	797	6.2266	64QAM	567	3.3223			
16	14	7.4063		14	64QAM	873	5.1152	256QAM	885	6.9141	64QAM	666	3.9023			
17	15			15	64QAM	948	5.5547	256QAM	948	7.4063	64QAM	772	4.5234			

Spectral Efficiency Calculation

The last step is to calculate Spectral Efficiency using:

1. MCS * PDSCH Layer i.e. Column H * Column I
2. CQI * Rank i.e. Column N * Column O

J28 =IF(OR(H28="?",I28="?"),"?",H28*I28)

	A	E	F	G	H	I	J
	Timestamp	Net PDSCH Thp [MBit/s] :	PDSCH BLER [%] :	Avg PDSCH MCS :	Avg PDSCH MCS :	Avg PDSCH Layers :	Spectral Efficiency (MCS*Layer) :
1	[dd.mm.yyyy,hh:mm:ss.ss]	[1T]	[1T]	[1T]	[1T]	[1T]	[1T]
28	19.03.2025,11:39:05.209	77.41	3.51	19	5.1152	3	15.3456
29	19.03.2025,11:39:05.731	117.89	5.15	21	5.5547	3	16.6641
30	19.03.2025,11:39:06.242	119.62	16.33	21	5.5547	3	16.6641
31	19.03.2025,11:39:06.762	125.43	6.02	15	3.9023	3	11.7069
32	19.03.2025,11:39:06.815	157.71	0	16	4.2129	2	8.4258
33	19.03.2025,11:39:07.343	158.9	6.81	21	5.5547	2	11.1094
34	19.03.2025,11:39:07.873	192.82	7.21	24	6.5703	2	13.1406
35	19.03.2025,11:39:08.310	229.81	6.76	25	6.9141	2	13.8282
36	19.03.2025,11:39:08.827	188.6	12.1	21	5.5547	1.9	10.55393
37	19.03.2025,11:39:09.340	237.54	8.15	17	4.5234	2	9.0468
38	19.03.2025,11:39:09.863	227.85	9.86	15	3.9023	2	7.8046
39	19.03.2025,11:39:09.914	256.83	5.88	15	3.9023	2	7.8046
40	19.03.2025,11:39:10.077	110.64	4.21	15	3.9023	2	7.8046

P28 =IF(OR(N28="?",O28="?"),"?",N28*O28)

	A	E	F	G	H	I	J	K	L	M	N	O	P
	Timestamp	Net PDSCH Thp [MBit/s] :	PDSCH BLER [%] :	Avg PDSCH MCS :	Avg PDSCH MCS :	Spectral Efficiency Layers :	Avg PDSCH TBS [Bytes] :	Avg Num PDSCH RB :	5G NR UE\5G NR Carriers\Av g. CQI WB :	5G NR UE\5G NR Carriers\Av g. Rank :	5G NR UE\5G NR Carriers\Av g. Rank :	Spectral Efficiency (CQI*Rank) :	
1	[dd.mm.yyyy,hh:mm:ss.ss]	[1T]	[1T]	[1T]	[1T]	[1T]	[1T]	[1T]	[1T]	[1T]	[1T]	[1T]	
28	19.03.2025,11:39:05.209	77.41	3.51	19	5.1152	3	15.3456	22655	159	12	5.5547	4	22.2188
29	19.03.2025,11:39:05.731	117.89	5.15	21	5.5547	3	16.6641	29042	172?	?	?	?	?
30	19.03.2025,11:39:06.242	119.62	16.33	21	5.5547	3	16.6641	27133	184?	?	?	?	?
31	19.03.2025,11:39:06.762	125.43	6.02	15	3.9023	3	11.7069	20505	211?	?	?	?	?
32	19.03.2025,11:39:06.815	157.71	0	16	4.2129	2	8.4258	18788	226?	?	?	?	?
33	19.03.2025,11:39:07.343	158.9	6.81	21	5.5547	2	11.1094	24370	213?	?	?	?	?
34	19.03.2025,11:39:07.873	192.82	7.21	24	6.5703	2	13.1406	29297	215?	?	?	?	?
35	19.03.2025,11:39:08.310	229.81	6.76	25	6.9141	2	13.8282	31659	213?	?	?	?	?
36	19.03.2025,11:39:08.827	188.6	12.1	21	5.5547	1.9	10.55393	33118	203?	?	?	?	?
37	19.03.2025,11:39:09.340	237.54	8.15	17	4.5234	2	9.0468	30575	223	12.3	5.5547	3	16.6641
38	19.03.2025,11:39:09.863	227.85	9.86	15	3.9023	2	7.8046	25948	225	10.6	4.5234	3	13.5702

Spectral Efficiency Calculation

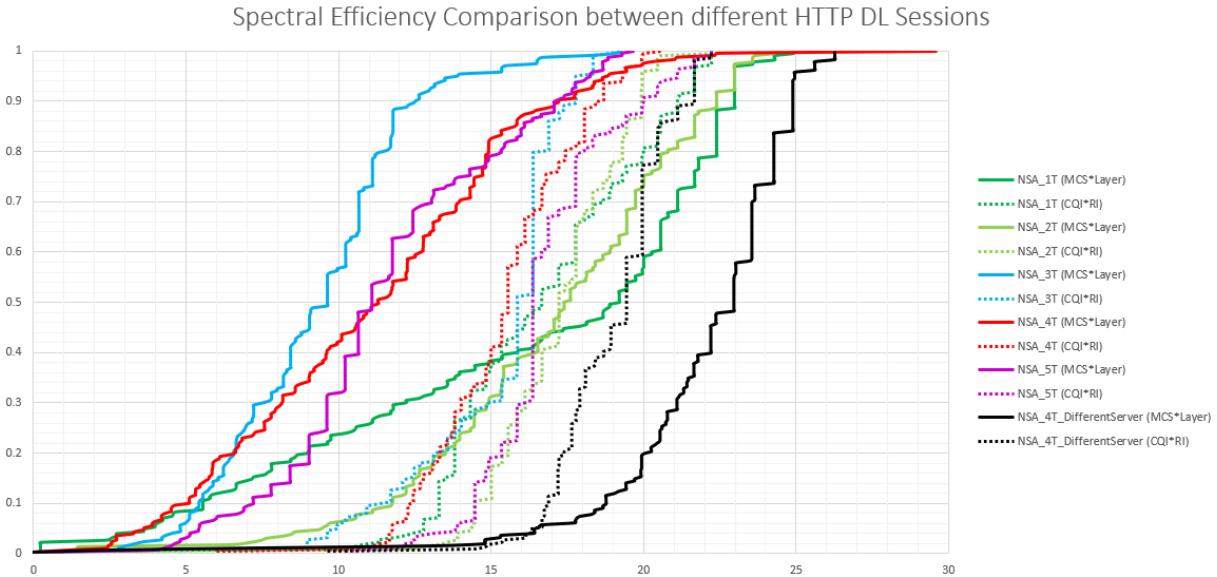
The last step is to calculate Spectral Efficiency using:

1. MCS * PDSCH Layer i.e. Column H * Column I
2. CQI * Rank i.e. Column N * Column O

Spectral Efficiency Comparison between different HTTP DL Sessions

The figure below is a CDF (cumulative distribution function) comparison of spectral efficiency for different HTTP downlink sessions under 5G EN-DC (NSA) conditions.

The X-axis shows Spectral Efficiency (0 - 30 bps/Hz)


The Y-axis show CDF (0-1)

Each color represents a different number of parallel HTTP DL sessions:

NSA_1T, 2T, 3T, 4T, 5T

For each scenario, two estimation methods are plotted:

- Solid lines: Spectral Efficiency derived from MCS * PDSCH Layer
- Dotted lines: Spectral Efficiency derived from CQI * RI

Key Observation

- Servers plays roles in the above measurement files, as we can see **NSA_4T** and **NSA_4T_DifferentServer** shows significant gap in spectral efficiency.
- With default server, increasing number of parallel HTTP DL sessions does not guarantee higher spectral efficiency. In the measurement, NSA_3T case shows the lowest spectral efficiency distribution, while NSA_1T and NSA_2T provide better spectral efficiency.